Modelling the diffusion and effect of behavior changing feedback devices

Thorben Jensen (Wuppertal Institute)
Georg Holtz (Wuppertal Institute)
Emile Chappin (Delft University of Technology)
The German "Energiewende" - Development of an Integrative and Transformative Research Design in the Case of the Energy Transition of the Ruhr Area and North Rhine-Westphalia (funded by BMBF)

- Goals of project: To provides a conceptual and methodical framework by which the “Energiewende” can be analysed and scientifically accompanied in an integrative way.

- Methods:
 - Integrative system analysis (energy and resource use) (WI)
 - Qualitative analysis of change agents (KWI)
 - Concrete real-world experiments („living labs“) (WI)
 - Developing strategies for the diffusion of successful approaches (WI)
 - Agent-based modelling (WI)

- Non-scientific Partners:
 - Federal State North Rhine-Westphalia
 - InnovationCity GmbH Bottrop
 - Cities of Dortmund and Oberhausen
Context of presented model

The „Energiewende“

Energy use (EU)

Residential buildings

Heating

30%

57%
Context of presented model

Behavior changing feedback devices
Purpose of model

Assess contribution to energy savings

Effect =

\[
\text{effect within household} \times \text{number of adopters} + \text{effect on behavioral norms}
\]
Conceptual model
Co-Diffusion of Devices and Behaviour

Behavior Diffusion

Device Effect

Technology Diffusion

HH A

Heating Behavior

Device Adoption

Slide 6
Model description

Overall approach

- Conceptual study to test relevance of ideas (effect of co-diffusion?)

- Agent-based modeling (Netlogo)
 - Interactions between households drive co-diffusion
 - Capture networks (socio-spatial effects), heterogeneity, bounded rationality

- Use two existing models:
 - Technology diffusion: Schwartz & Ernst 2009
 - Behavior diffusion: Anderson et al. 2014

- Device effect:
 - Asymptotic change of behavior towards incentivized target

- Network:
 - Empirical information on ego-networks of heating behavior
 - Higher probability for links: spatially close, similar agents
Model description

Sub-models

- Technology diffusion
 - Lead: adopt device
 - Maj: adopt device \((p=0.5)\), imitate \((p=0.5)\)
 - Hed: imitate majority of peers
 - \(p_{\text{decision}} = 0.004\)

- Behavior diffusion

\[
\beta_{i,t} = \beta_{i,t-1} + s_i \cdot \left(\frac{\sum_{j=1}^{N} w_{ij} \cdot \beta_{j,t-1}}{\sum_{j=1}^{N} w_{ij}} - \beta_{i,t-1} \right)
\]

- Device effect

\[
\beta_t = \beta_{t-1} + (\beta^*_\infty - \beta_{t-1}) \cdot \Delta \beta
\]
Results

Simulation results

- Simulated case: heating behavior
 - Initial heating behavior $\beta_{i,t=0} = 21.1 \, ^\circ\text{C}$
 - Incentivized behavior $\beta^*_{\infty} = 18 \, ^\circ\text{C}$
- Simulation time: 1990 – 2020
- Time step: 1 month
- 3000 Households

Behavior diffusion decreases heterogeneity within lifestyles... and between lifestyles
Model results

Mechanism

- Co-diffusion of devices and behavior amplifies the effect of behavior changing feedback devices because:

 1. Behavior diffusion \rightarrow convergence of behavior
 2. Device adopters’ change is slowed down \rightarrow stronger and prolongend effect of devices
 3. This additional effect is re-distributed to non-adopters
Survey on heating behavior change

‘Pattern oriented modeling’ with empirical data

Trial testing the effect of devices in Living Labs

Adapt empirical-based choice model to specific feedback device(s)

Agents

Social Data

Social Network

Policy Support

Scenarios for device introduction

Indicators
(C02 mitigation, resource balance)
Discussion
Relation to transitions thinking and modeling

- “Simple” case:
 - “Only” behavioral change / diffusion
 - Only demand side
 - No regime structure

- Captured core aspects of transitions thinking and modeling:
 - endogenous dynamics
 - co-evolution / co-diffusion
 - networks, heterogeneity, bounded rationality

- “Amplification of behavioral change” - effect may also prevail in other settings where technology induces change in behavior

- Addition to toolbox for mechanistic understanding of transitions
References

2. Anderson et al. (2014): Impact of Social Network Type and Structure on Modeling Normative Energy Use Behavior Interventions
Thank you for your attention!

Contact:
www.wupperinst.org
georg.holtz@wupperinst.org